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Using data corresponding to an integrated luminosity of 79 pb21, D0 has searched for events
containing multiple jets and large missing transverse energy in pp collisions at

p
s � 1.8 TeV at the

Fermilab Tevatron collider. Observing no significant excess beyond what is expected from the standard
model, we set limits on the masses of squarks and gluinos and on the model parameters m0 and m1�2, in
the framework of the minimal low-energy supergravity models of supersymmetry. For tanb � 2 and
A0 � 0, with m , 0, we exclude all models with mq̃ , 250 GeV�c2. For models with equal squark
and gluino masses, we exclude m , 260 GeV�c2.

PACS numbers: 12.60.Jv, 13.85.Rm, 14.80.Ly
Supersymmetry (SUSY) [1] is a symmetry that relates
fermions and bosons, and can solve the hierarchy problem
of the Higgs sector of the standard model (SM) [2].
Minimal SUSY extensions of the SM (MSSM) require
partners (sparticles) for all standard model particles: a
scalar partner for each quark and lepton (called squarks
and sleptons), and a spin-half partner for each of the gauge
bosons and Higgs scalars, which form the gluinos and
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the mixed states called charginos and neutralinos. Such
models also require four Higgs particles. Each particle in
a SUSY model has an internal quantum number called R
parity. If R is conserved, as is assumed in this analysis,
then sparticle states must be produced in pairs, and each
sparticle that decays must contain an odd number of
sparticles in its decay products. Consequently, the lightest
SUSY particle (LSP) must be stable.

Because the most general supersymmetric extension
of the SM has over 100 undetermined parameters, mod-
els have been developed that contain additional symme-
tries and constraints. Here we consider gravity-mediated
SUSY breaking models, called minimal low-energy super-
gravity (mSUGRA) [3], where the scalar (squark and slep-
ton) masses are unified to a single value m0 at the grand
unified theory energy scale, and the gaugino masses are
unified to a single value m1�2. Three other parameters de-
scribe the Higgs and gaugino sectors of the model: tanb,
the ratio of the vacuum expectation values of the two
Higgs doublets; A0, a universal trilinear coupling constant;
and the sign of m, a mixing parameter in the Higgsino
mass matrix. For models in which the lightest neutralino
�x̃0

1 � is the LSP, the LSP interacts only weakly and there-
fore cannot be observed directly, providing an excellent
experimental SUSY signature: large missing transverse
energy �E�T �. In such models, squarks �q̃� and gluinos �g̃�
can decay through a cascade of charginos and neutralinos
to final states consisting of quarks, leptons, and the LSP.
Here we describe a search for squarks and gluinos in the
jets and E�T channel.

The data, corresponding to an integrated luminosity of
79.2 6 4.2 pb21, were collected with the D0 detector [4]
at the Fermilab Tevatron pp collider operating at a center-
of-mass energy of 1.8 TeV during 1993–1995. D0 has
three major components: a central tracking system, cen-
tral and forward uranium/liquid-argon calorimeters with
towers in pseudorapidity and azimuth of Dh 3 Df �
0.1 3 0.1, and a toroidal muon spectrometer. Jets are re-
constructed using a cone algorithm [5] with a cone radius
of 0.5 in h-f space. The electromagnetic energy scale is
set using the Z ! ee signal. The jet energy scale is deter-
mined from energy balance in events containing a hadronic
jet and a photon candidate. The E�T is calculated from the
vector sum of energy deposited in all calorimeter cells.

The initial data set was collected using an on-line hard-
ware trigger that required E�T . 40 GeV and at least one
calorimeter trigger tower (of size Dh 3 Df � 0.2 3

0.2) with transverse energy ET . 5 GeV. Furthermore,
a software off-line filter required that events have E�T .

40 GeV and at least two jets with ET . 8 GeV.
To remove events with false large E�T due to detector

noise and losses from the accelerator, we required events
to have a summed scalar ET �ST �, 0.0 , ST , 1.8 TeV.
The position of the primary interaction vertex is also
required to be within 60 cm of the detector center. This
initial data sample contains 71 023 events.

2

We required that all jets in the event with ET .

15 GeV meet quality criteria based on cluster shape [6],
and that the three jets with the highest ET be within
jhj , 1.1, or within 1.4 , jhj , 3.5. The shape criteria
reject events with large E�T caused by poorly measured jets
and detector noise and events where a jet deposited more
than 90% of its energy in the electromagnetic portion
of the calorimeter. Events with real electrons, such as
production of W ! en with jets, are thus effectively
eliminated.

To select events consistent with the signal, we required
at least three jets with ET . 25 GeV. In order to use a jet
trigger for background studies, we accepted only events
where the leading jet had ET . 115 GeV. 2723 events
remain in the data at this point. We required at least
E�T . 75 GeV (E�T threshold varies with signal sample)
in order to be in the region where our analysis trigger was
fully efficient. These requirements leave 544 events.

To suppress quantum chromodynamics (QCD) multijet
background, we required the azimuthal difference between
the E�T and a jet of ET . 25 GeV be df . 0.1, or ,�p 2

0.1� radians. We also required �df1 2 p�2 1 df $

�0.5�2
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TABLE I. Optimized E�T and HT thresholds for several regions of mSUGRA parameter space. The optimal thresholds were cho-
sen for the specified m0 and m1�2 values that correspond to the listed gluino and squark masses. The next-to-leading-order cross
sections and the total efficiency for signal events, with their combined statistical and systematic uncertainties, the total number of
events expected from backgrounds, with their statistical and systematic uncertainties, the number of observed events, the probability
for observing Nobs events or greater given the background prediction, and the 95% confidence level upper limit on the cross section
for the particular �m0, m1�2� point are given in the remaining columns. Note that the entries in this table are strongly correlated.

E�Tthresh HTthresh �m0, m1�2� �mg̃, mq̃� ssig e Nbck-pred Nobs Pover s95

(GeV) (GeV) �GeV�c2� �GeV�c2� (pb) (%) (%) (pb)

50 100 relaxed E�T threshold 43.0 6 0.818.5
28.2 49 29.5 · · ·

75 100 �150, 80� �243, 249� 4.4 5.8 6 0.511.7
21.4 8.3 6 0.813.4

23.2 15 9.2 4.4
75 120 �300, 50� �172, 318� 15.7 1.5 6 0.310.3

20.2 5.5 6 0.512.7
22.6 12 6.2 14.8

75 140 �200, 80� �246, 278� 2.4 5.8 6 0.411.0
21.6 3.6 6 0.2 6 2.1 11 2.0 5.1

75 150 �250, 60� �198, 286� 7.1 3.1 6 0.310.4
20.9 3.0 6 0.1 6 1.9 8 6.1 8.1

75 160 �300, 70� �228, 339� 2.0 4.2 6 0.410.7
20.8 2.6 6 0.111.8

21.7 6 12.9 3.3
90 100 �100, 100� �290, 266� 1.8 7.7 6 0.511.4

21.5 6.0 6 0.712.7
22.5 8 31.8 1.7

100 100 �0, 100� �288, 250� 2.8 4.9 6 0.411.0
21.1 4.6 6 0.712.2

22.0 7 25.4 2.7
100 150 �200, 110� �322, 330� 0.3 9.2 6 0.510.6

21.3 1.3 6 0.1 6 1.2 3 24.4 0.9
assumed the tt production cross section of 5.9 6 1.6 pb
[9], which yielded a prediction of 3.1 6 0.2�stat�11.4

21.3�syst�
background events.

Comparable backgrounds come from the production of
W and Z bosons. Substantial E�T can arise in events with
a W boson decaying to leptons where the charged lepton
is not identified, and in events with Z ! nn or Z ! tt

decays. To estimate these backgrounds, we generated
Monte Carlo samples for W boson events with VECBOS

[10] (quark hadronization simulated using ISAJET [11]),
Z bosons with PYTHIA [12], and WW and WZ events
with ISAJET. The detector response was modeled as for
the tt sample. From all vector boson production sources,
we predict 2.8 6 0.810.7

20.5 events, 85% of which are from
W ! �n and Z ! nn decays.

The only remaining background is events that have E�T

because one or more jets are mismeasured. To deter-
mine this background, we used events from 56 pb21 of
data collected with a trigger requiring at least one jet
with ET . 85 GeV. The trigger was fully efficient for
events containing a jet with ET . 115 GeV. Events with
E�T , 50 GeV were used to determine this instrumental
background to events with larger E�T using two different
estimations. The primary method relied on a Bayesian
shape analysis [13]. We define the quantity Dpp �p

�df1 2 p�2 1 �df2 2 p�2, which has a distribution
that is strongly peaked at large Dpp for events with appar-
ent E�T due to mismeasured jets and is nearly independent
of the E�T threshold. For tt and signal the distribution is
less peaked, as shown in Fig. 1. To determine the multijet
contribution, we performed a three-component (tt, multi-
jet, and signal) fit to the shape of the Dpp distribution in
the data. The backgrounds quoted in Table I include the
multijet contribution, as determined in this fit. As a check,
we fit the E�T spectrum of our event sample between 25 and
50 GeV to an exponential in E�T ; extrapolation to higher E�T
yielded a prediction in agreement with the fit to Dpp , as
shown in Table II.

To verify these background calculations, we relaxed
the E�T threshold to 50 GeV and obtained predictions of
7.6 6 0.812.9

22.1 events from tt and W and Z boson produc-
tion, and 35.4 6 7.9 events from QCD multijet, for a total
of 43.0 6 0.818.5

28.2 events from background. We observed
49 events in the data.

The final selection criteria for each �m0, m1�2� point
were determined by choosing HT and E�T thresholds that
maximized the S�dB ratio, where S is the expected num-
ber of SUSY events and dB is the combined systematic

0

1

2

0 1.5 2 2.5 3 3.510.5

0 1.5 2 2.5 3 3.510.5
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TABLE II. Comparison of the number of background events
expected from QCD multijet sources, as obtained from fits to
Dpp and from extrapolations from lower E�T (see text). Note
that the uncertainties in the extrapolation do not include the
systematic uncertainty due to the dependence on the choice of
functional form. The results of the Bayesian fit are used in the
analysis.

E�Tthresh HTthresh

(GeV) (GeV) Bayesian fit to Dpp Extrapolation

75 100 2.5 6 2.6 2.8 6 0.9
75 150 0.8 6 1.6 1.7 6 0.3

100 100 0.7 6 1.6 0.6 6 0.1

and statistical uncertainty on the background predicted
from the SM. Table I shows the thresholds used. Varia-
tion of the jet energy scale [14] dominates the systematic
uncertainty for Monte Carlo based background estimates.

We note that, for all of the entries in Table I, the num-
ber of observed events is greater than the number pre-
dicted from background. The results are highly correlated,
since most rows are subsets of previous rows. The proba-
bility of obtaining at least the number of events observed
for any of the listed cutoffs is more than 2%, and we
therefore interpret our result as a constraint on the m0
and m1�2 parameters of mSUGRA. By simulating squark
and gluino production and decay with ISAJET, followed by
the same detector response and event reconstruction as in
our previous simulations, we generated samples at several
values of m0 and m1�2, all with the mSUGRA parame-
ters tanb � 2, A0 � 0, and m , 0. Using the next-to-

FIG. 2. The exclusion contour obtained in this analysis (heavy
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ranges between 100 GeV�c2 for small m0 and 60 GeV�c2

for large m0.
In summary, we have searched for events with large E�T

and multiple jets, and observe no statistically significant
excess of events beyond expectations from SM processes.
This null result is interpreted in the context of minimal
low-energy supergravity as an excluded region in the
�m0, m1�2� plane and is most pertinent in increasing the
mass limits on squarks and gluinos.
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